

Fitoterapia 78 (2007) 279-282

FITOTERAPIA

www.elsevier.com/locate/fitote

Epoxysesquithujene, a novel sesquiterpenoid from Valeriana hardwickii var. hardwickii

Chandra S. Mathela^{a,*}, Chandan S. Chanotiya^a, Shalini Sati^a, Subhash S. Sammal^a, Victor Wray^b

^a Department of Chemistry, Kumaun University, Nainital 263002, India ^b Department of Structural Biology, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany

> Received 19 December 2005; accepted 25 January 2007 Available online 11 April 2007

Abstract

Epoxysesquithujene, a new sesquiterpene epoxide has been characterized in the essential oil of *Valeriana hardwickii* var. *hardwickii* on the basis of chemical reactions and extensive NMR data. Fourteen other terpenoids have also been identified on the basis of GC-MS.

© 2007 Published by Elsevier B.V.

Keywords: Valeriana hardwickii var. hardwickii; Essential oil; Epoxysesquithujene

1. Introduction

Valeriana, a major genus in the Valerianaceae, is known for its use in traditional herbal medicines in treatment of epilepsy and insanity [1,2]. Recently Himalayan *Valeriana* have been analysed for their terpenoid diversity [3,4]. We report here the isolation of a new compound (1) and the composition of Himalayan *Valeriana hardwickii* var. *hardwickii*, a rare aromatic herb growing at an altitude of 2200m.

2. Experimental

2.1. General

HPLC: Waters 440 with RI detector and μ -porasil column (250 mm × 7.8 mm size) using varying concentrations of Et₂O in hexane at a flow rate of 2.0 ml/min. The sample was dissolved in the mobile phase and injected using a 25 ml loop.

GC: Nucon 5765 Gas Chromatograph using a RTX-5 MS capillary column (30 m×0.32 mm, 0.25 µm film coating).

* Corresponding author.

E-mail address: mathelacs@rediffmail.com (C.S. Mathela).

280

Carbon	¹ H		¹³ C		Direct	Long-range
	1	3 ^a	1	2 ^b	correlation of ¹ H to ¹³ C in 1	correlations of ¹ H to ¹³ C in 1
1	1.26 (3H, s)	1.61(3H, <i>s</i>)	18.6	29.6	1 (126.6)	14, 2, 3
2	-	-	58.0	71.4		_
3	2.71 (1H, t)	5.12 (1H, t)	64.6	44.7	3 (165.9)	14, 4, 5, 2
4	1.59 (1H, m)	2.04 (2H, dt)	27.0	32.0		13, 5, 8
5	1.59 (1H, m)	1.1 (1H, m)	31.8	36.1		
6	1.17 (1H, m)	1.4 (1H, m)	38.3	38.8		
7	-	_	33.0	33.4		
8	α 2.39 (1H, <i>dt</i>)	α 2.38 (1H, <i>dt</i>)	35.3	35.9		α 12, 7, 6, 9, 10
	β 2.10 (1H, <i>dm</i>)	β 2.11 (1H, <i>dm</i>)				β 9,10
9	4.90 (1H, br s)	4.95 (1H, br s)	120.8	121.3		15, 11, 7, 8, 10
10	-	-	145.0	145.5		
11	1.32 (1H, <i>m</i>)	1.31 (1H, <i>m</i>)	30.9	31.3		13, 5, 8
12	α 0.11 (1H, <i>m</i>)	α 0.10 (1H, dd)	23.6	24.1	12 β (158.7)	
	β 0.76 (1H, <i>m</i>)	β 0.76 (1H, dd)			,	
13	0.95 (3H, d)	0.93 (3H, d)	17.8	18.3	13 (131.7)	5, 7, 6
14	1.31 (3H, s)	1.68 (3H, s)	24.9	24.6	14 (128.0)	1, 2, 3
15	1.75 (3H, bs)	1.76 (3H, dt)	16.2	16.7	15 (127.8)	11, 9, 10

Table 1 NMR data of compound 1, 2 and 3 (CDCl₃, J in Hertz)

^a Data taken from Ref. [8].

^b The ¹³C signals of C-1, C-2, C-3 and C-4 were assigned from a comparison with the shifts of 2-methylhexan-2-ol [9].

GC-MS: Thermo Quest Trace GC 2000 interfaced with Finnigan MAT Polaris Q ion trap MS using a RTX-5 MS non-polar capillary column (30 m×0.25 mm, 0.25 µm film coating), the oven temp from 60 °C at 3 °C/ min ramp to 210 °C with a final hold time of 10 min. The EI-MS were recorded at 30 and 70 eV.

¹H NMR (300 MHz) and ¹³C NMR (75 MHz): Bruker DRX-300 in CDCl₃.

IR: Perkin Elmer 881 IR spectrometer.

Optical rotations: Autopol III in CHCl₃.

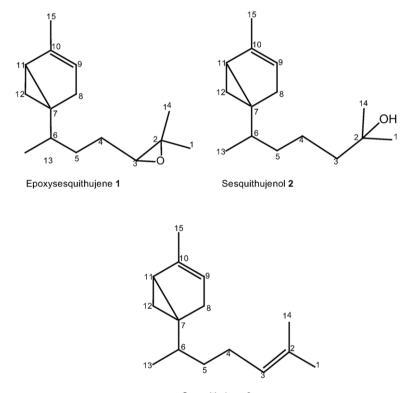
2.2. Plant

V. hardwickii var. hardwickii roots/rhizomes, collected from the Khati village located in Kumaon Himalaya (2200 m) in September 2003 was identified by the Botanical Survey of India, Dehradun. A voucher specimen has been deposited in the Phytochemistry Laboratory, Chemistry Department, Kumaun University.

2.3. Extraction and isolation

The fresh roots/rhizomes (200 g) steam distilled with a copper still fitted with spiral glass condensers for 2 h yielded 5 l water distillate. Water distillate was saturated with NaCl and extracted with hexane/CH₂Cl₂. The organic phase was dried over anhydrous Na₂SO₄ and evaporated on thin-film rotary evaporator giving 0.5 ml of oil. The oil fractionated on Si-gel CC with gradient elution from *n*-hexane to 30% Et₂O in *n*-hexane. Et₂O in *n*-hexane (5%) gave four fractions (I–IV). Fraction III (100 mg) was purified by using µ-porasil column 2.0 ml/min flow rate and RI detector using 5.0% Et₂O in *n*-hexane to give compound 1 (65 mg). Fractions V–VIII gave bornyl acetate [5].

Epoxysesquithujene (1). $C_{15}H_{24}O$, colourless liquid; $[\alpha]_{D}^{20}-38.04$ (CHCl₃; c 0.34); EI-MS *m/z*: 220 [M⁺]; ¹H NMR and ¹³C NMR: reported in Table 1.


Compound 1 with LiAlH₄/ THF at 20 °C for 1 h gave a mixture with sesquithujenol (2) as the major product. ¹³C NMR data: see Table 1.

3. Results and discussion

Organic solvent extraction of the steam distillate of the root/rhizomes of V. hardwickii var. hardwickii afforded the essential oil that after CC and HPLC yielded a novel compound epoxysesquithujene 1 along with bornyl acetate.

The essential oil analysis showed the presence of more than 20 compounds, 15 of which were identified by GC-MS using the NIST and WILEY MS library search [6]. α -Pinene (0.12%), β -pinene (0.16%), camphene (1.42%), p-cymene (0.10%), limonene (0.12%), γ -terpinene (0.26%), borneol (0.30%), thymol methyl ether (1.81%), carvacrol methyl ether (0.58%), bornyl acetate (20.45%), *cis*-caryophyllene (3.22%), methyl thymohydroquinone (0.51%), *trans*-caryophyllene (0.36%) and ar-curcumene (1.17%) are among the major compounds identified. On the contrary, *Valeriana javanica*, a morphologically indistinguishable species, has been reported to possess kessyl acetate (36.2%), patchouli alcohol (10.3%), kessane (6.8%) and valeranone (3.2%) [7]. Thus, the results conclude that the *V*. *hardwickii* and *V. javanica* have no similarity in their flavor compositions and this will consequently affect their use as medicine and flavour materials. Significantly epoxysesquithujene is ca. 50% of *V. hardwickii* var. *hardwickii* essential oil and has not been found in any other *Valeriana* sp.

Compound 1 was obtained as a colourless oil whose EI-MS: $m/z 220 [M^+]$ was compatible with a molecular formula C₁₅H₂₄O. Comparison of the NMR data reported in Table 1 with those of compound sesquithujene (3) [8] and the reduction product sesquithujenol (2) [9] revealed it to be the novel compound epoxysesquithujene.

Sesquithujene 3

Acknowledgements

The authors are grateful to the DST, New Delhi for a GC-MS grant and Fellowships to two of us (CSC and SSS), to BSI Dehradun for plant identification and SAIF, CDRI, Lucknow, India for NMR and specific rotation measurements.

References

- [1] Houghton PJ. J Pharm Pharmacol 1999;51:505.
- [2] Acharya JT. Charak Samhita. Varanasi: Chaukambha Sanskrita Sansthan; 1994.
- [3] Sati S, Mathela CS. Flavour Fragr J 2005;20:299.
- [4] Mathela CS, Chanotiya CS, Sammal SS, Pant AK, Pandey S. Chem & Biodiver 2005;2:1174.

- [5] Mitzner BM, Manchini VJ, Lamberg S, Thiemer ET. Appl Spectrosc 1968;22:34.
- [6] Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, IL: Allured Publ Corp; 1995.
- [7] Bos R, Woerdenbag HJ, Hendriks H, Sidik HV, Wikström, Scheffer JJC. Flavour Fragr J 1996;11:321.
- [8] Terhune ST, Hogg JW, Bromstein C, Lawrence BM. Can J Chem 1975;53:3285.
- [9] Bremser W, Ernst L, Frank B, Gerhards R, Hardt A. Carbon-13 NMR spectral data. Weinheim: Verlag Chemie; 1981.